FINAL: ALGEBRA II

Date: 4th May 2018

The Total points is **110** and the maximum you can score is **100** points.

Notation: \mathbb{F}_p denotes the finite field of p elements where p is a prime number.

- (1) (8+8+8+8=32) Mark all correct options.
 - (a) Which of the following fields are a splitting field of X⁸ − 5 over Q(i)?
 (i) Q(i)([§]√5)
 - (i) $\mathbb{Q}(i)(\sqrt[8]{5}, e^{2\pi i/8})$
 - (ii) $\mathbb{Q}(i)(\sqrt[8]{5},\sqrt{2})$
 - $(11) \quad Q(i) \quad V_{0}, \quad V_{2}$
 - (iv) $\mathbb{Q}(i)(\sqrt[11]{3},\sqrt{3})$
 - (b) Which of the following statements are true?
 - (i) Every algebraic extension of $\mathbb{Q}(x)$ is separable.
 - (ii) Every algebraic extension of $\mathbb{F}_p(x)$ is separable. Here x is an indeterminate.
 - (iii) Every algebraic extension of \mathbb{F}_p is separable.
 - (iv) Every Galois extension of $\mathbb{F}_p(x_1, x_2)$ is separable. Here x_1 and x_2 are indeterminates.
 - (c) Which of the following field extensions are purely transcendental?
 - (i) $\mathbb{F}_p(x_1, x_2)/\mathbb{F}_p$ where x_1 and x_2 are indeterminates.
 - (ii) $\mathbb{Q}(\sqrt[3]{7})/\mathbb{Q}$
 - (iii) $\mathbb{C}(x)/\mathbb{C}(x^5)$
 - (iv) $\mathbb{C}(x)[\sqrt{x}]/\mathbb{C}$
 - (d) Let G and H be profinite groups. Which of the following are true?
 - (i) $G \times H$ is a profinite group.
 - (ii) Every finite index closed subgroup of G is also open in G.
 - (iii) Every subgroup of G is closed in G.
 - (iv) Every nonempty open subset of G is a subgroup of G.
- (2) (8 points) Give an example of the following (without justification).
 - (a) A finite extension which is not simple.
 - (b) A separable field extension which is not Galois.
 - (c) An inseparable extension which is not purely inseparable.
 - (d) An algebraic extension of \mathbb{Q} which is not solvable by radicals.
- (3) (5+10=15 points) Let Ω/F be a field extension. When are two field extensions of F contained in Ω called linearly disjoint? Let K/F and L/F be linearly disjoint Galois extensions contained in Ω with Galois group G_1 and G_2 . Compute the Galois group $\operatorname{Gal}(KL/F)$.
- (4) (5+10=15 points) Let F be a field of characteristic p > 0. When is a finite extension K/F called purely inseparable? Show that K/F is purely inseparable iff there is a unique F-embedding of K into the algebraic closure of F.

FINAL: ALGEBRA II

- (5) (8+12=20 points) Let L/F be a finite field extension. Define the norm and the trace map for the extension L/F from L to F. Show that if L/F is a Galois extension then there exists an $\alpha \in L$ such that its trace $T_{L/F}(\alpha) \neq 0$.
- (6) (10+10=20 points) Let F be a field of characteristic p and $a \in F$ be such that the polynomial $f(Z) = Z^p Z a$ is irreducible in F[Z]. Let $b \in F$ and α be a root of f(Z) in some fixed algebraic closure \overline{F} of F. Compute the minimal polynomial of $\alpha+b$ over F. Let $\beta \in \overline{F}$ be such that $c := \beta^p \beta \in F$. Show that if $a uc = x^p x$ for some nonzero $u \in \mathbb{F}_p$ and some $x \in F$, then $F[\alpha] = F[\beta]$.

 $\mathbf{2}$